Plant

Perennial
Herbacious
Europe, Temperate Asia, Zone 3-10
Soft wooded

Bark Type

Soft wooded

No secondary (woody) tissue being formed. The texture is fleshy and is soft, easy to cut.
Prostrate

Growth Habit

Prostrate

Having a low to flattened growth.
Fast
0.4 - 0.6 m (1 - 2 ft )
1 m (3 ft)
85
Yes
High

Plant Overview

This semi evergreen rhizomatous perennial has a spreading habit and forms a clump. It has grey green fern-like leaves and the small red to pink daisy-like flowers appear in a flattened cluster from spring to summer. The cultivars have yellow flowers.

 

Achillea millefolium L. is naturally found from Europe including Britain to temperate western Asia growing in meadows or verges along paths, roadways  and creek embankments or disturbed soil from sea level to an altitude of 3,600 m (11,811 ft). It has also naturalised in many countries including Australia is commonly found in temperate or highland regions and is regarded as an environmental weed. It prefers a most-dry well drained moderately fertile sandy to clay, loamy or chalky soil that is high in nitrogen and acidic to alkaline of a pH range from 5.0 to 8.0. It grows in an open to expose sunny position and is drought and frost-cold tolerant.

 

The Common Yarrow is a hardy perennial that is grown for its flowers and is spreading habit. It is planted in herbaceous borders or is used for mass planting in parks and large gardens. It is also grown as a spill-over above rock walls or as a container plant. It establishes from division in one season and is an excellent flower and foliage contrast plant. It is easy to grow and the flowers are used in a floral arrangements and the plant has herbal uses. It may be invasive forming an extensive network of branch underground rhizomes and naturalises freely to a point where it is regarded as a weed. it has a vigorous growth rate establishing in one season and has a high water requirement (Scale: 3-drops from 3) double tolerant protracted drought. Care should be taken as contact with the foliage may cause skin irritation.

I.D. 1067

UK hardiness zone H7

Climate zones A1, A2, A3, 1-24

USDA Zone 3-10

 

Achillea (a-KIL-lee-a) / (a - KIL-lee-a) millefolium (meel-lee-FO-lee-um)

 

Etymology

Genus: - Latin - Achillea – named after the Greek hero of the Trojan War (Achilles) who is thought to be the person that discovered the medicinal uses of the plant

Species: Latin – millefolium – meaning (a thousand leaves) referring to the foliage of the plant

 

Note:

This species Achillea millefolium has a rich herbal tradition and is still being used in herbal medicine worldwide particularly in Europe. Detailed herbal use of the plant is under the heading cultural use.

 

Cultivars

'Burgundy'

This plant has deep red flowers.

 

'Cerise Queen'

This vigorous plant has bright pink flowers with white disk florets. The leaves are dark green and a mat forming habit.

 

'Cloth of Gold'

This bright golden-yellow form an upright bushy habit with pale green leaves and is suitable for cottage gardens.

 

'Fire King'

This vigorous plant has rich red flowers.

 

'Lachsschonheit'    syn. 'Salmon Beauty'

This clump forming perennial is a cross between Achillea millefolium and Achillea 'Taygetea' and commonly called the Galaxy Hybrids. It has linear pinnatifid dark green leaves and has an upright habit and produces salmon-pink flower heads during spring that fade to white. It is planted in cottage gardens along borders.

 

'Lavender Beauty'

This plant has lilac coloured flowers that fade to white.

 

'Paprika'

This plant has orange-red flowers that fade with age.

 

'Sammetriese'

This plant has large dark red flowers that fade with age.

 

'The Beacon'

This low growing perennial produces bright red flowers and has a spreading habit. It is suitable for rockeries or planted in cottage gardens for colour.

 

'Moonshine'

This plant has grey green leaves with light yellow flowers that have dark yellow disc-florets.

 

Other cultivars'Colorado','Coronation','Feverland','Fireland','Heidi','Island Pink','King Edward','Lavender Beauty','Lavender Deb','Lilac Beauty','Lilac Queen','Madelein','Moonshine','Moonwalker','Oertel's Rose','Paprika','Pink Grapefruit','Pomegranate','Pretty Belinda','Pretty Woman','Red Beauty','Red Velvet','Royal Tapestry','Salmon Beauty','Saucy Seduction','Snowsport','Sonoma Coast','Strawberry Seduction',
'Summer Pastels','Summerwine','Sunbeam','Sunny Seduction','Taygetea','Terra Cotta','The Beacon','Walter Funcke','Wilczekii'

 

Europe, Britain, Western Asia 

 

Asteraceae (ass-ter-AY-see-ee)        

(Compositae)

Sunflower Family

This family is recognised by several features the florets are clustered in the flower head, inferior ovary has one basal ovule and the stamens are connate around the style.

 

Distribution

This family is found throughout the world except Antarctica. In Australia they are found in arid and semi-arid regions covering large areas.

 

Diagnostic Features

There are numerous growth forms from small annual herbs, ephemeral, biennial or perennial rosette plants, shrubs but rarely creepers.

 

The leaves do not have stipules and may be arranged opposite or alternate with margins that are entire to deeply lobed. The texture may be leathery or succulent and may be reduced to spins or needles.

 

The simple flower is in a tight inflorescence with many florets that sit on a fleshy receptacle that is surrounded by many involucral bracts. In some genera the bracts are reduced or not present and the receptacle may be in an elongated form giving it a club-shape inflorescence.

 

Each flower has an inferior ovary normally with a colourful corolla on top with the calyx reduced to scales, bristle or hairs around the corolla.

Three distinctive Floret Types

 

1. Disk florets are funnel form corolla tube that has five equal lobes with fertile stamens and ovary.

 

2. The ligulate florets with a corolla that is split down one side and the limb formed is extended to form showy ray florets. These flowers are unisexual.

 

3. The filiform florets come from disk florets when the corolla tube is a slim cylindrical shape and these are normally unisexual.

 

The fruit produced from the different types is normally a cypsela (type of achene) although some florets don't produce fruit.

 

The corolla has five petals, which are five lobes in disk florets but are not easily seen in other types.

 

The stamens are arranged alternate with the petals and the filaments are normally fused to the corolla tube with the anthers arranged around the style in a connate form.

When the pollen falls onto the closed stigma the style elongates above the stamens and then the stigma opens to be pollinated.

 

The ovary is inferior with one chamber and one ovule and forms a one seeded fruit, which is really an indehiscent fruit (cypsela). These are normally distributed by animals with barbs formed by the pappus and some by wind.

 

Note:

This is one of the largest families but with low economic importance. They are used in the horticulture industry largely for cut flowers and in the case of sunflowers for seed oil. Many species are grown in domestic gardens and many have become weeds that are wide spread throughout the world.

 

This plant tolerates between USDA zones 3a to 10a and grows to 0.6 m (2 ft)

Fahrenheit      -40º to 35º F

These temperatures represent the lowest average.

Celsius          -40º to 1.6º C

 

Attention

This plant was last revised on the 26/03/2019

All photographs and data are covered by copyright. Apart from any fair dealing for the purpose of private study, research, reference or review, as permitted under the Copyright Act, no part including images and text may be reproduced by any means without written permission. The information presented in the map is only indicative and may contain errors and omissions. All inquiries should be addressed to sales@plantfile.com attention Peter Kirkland.

Leaf

Simple

Simple

The leaf that is not divided.
Lanceolate

Leaf Shape

Lanceolate

Broadest at the centre, three or more times long as broad (Lance-shape).
Alternate

Leaf Arrangement

Alternate

Leaves are arranged alternately along the stem.
Pinnatisect

Leaf Margin

Pinnatisect

A leaf margin or shape that is almost pinnate with lobes reaching the mid rib but not forming definite leaflets.
Grey-green
150 - 300 mm ( 5.9 - 11.8 in )

Additional Information

The leaves are lanceolate to linear, up to 300 mm (1 ft) long by a 35 mm (1 3/8 in) is wide and the margin is normally pinnatisect, but sometimes entire. The colour varies from dark green to grey green and the soft texture leaf is aromatic when crushed.

 

Care should be taken as contact with the foliage may cause skin irritation.

Flower

Tubulate

Botanic Flower Description

Tubulate

A flower that forms a tube shape.
Odorless
Capitulum

Flower Inflorescence

Capitulum

Sessile florets on a flattened and expanded apex (a daisy-like flower). Ray florets can be absent.
Red - pink
2 - 4 mm ( 0.1 - 0.2 in )

Flowering Season

(Southern Hemisphere)

Jan Feb Mar Apr May Jun
Jul Aug Sep Oct Nov Dec

Additional Information

The flower heads (capitulum) are made up of ray florets and tubulate disk florets and are surrounded by 20 overlapping bracts. The 10 mm (3/8 in) wide flower heads have 4-7 petal-like lobes that are white, pinkish-red or mauve in colour and in the centre are the bisexual ray florets that are yellow, white or cream in colour. The flower heads are arranged in a flat corymb that is up to 100 mm (4 in) wide or larger above the foliage.  The flowering period varies from spring in warm regions to late summer-autumn in cooler regions.

 

Note; The compressed inflorescence is called the capitulum or flower head and is composed at the base with a receptacle (involucre) that has one to several rows of bracts that may be spiny. The bisexual or unisexual flowers are attached to the receptacle. The ray florets have a corolla tube that is slit along one side with a Ligule (single petal) normally extend out around the rim giving the flower head a daisy-like appearance. (May be absent in some genus) There are many tubular disk florets in the centre of the flower head and they have 3-5 equal lobes.

 

 

Fruit

Achene

Fruit Type

Achene

It is a one-seeded indehiscent fruit with a thin pericarp and normally arranged in groups."
Brown
No
1 - 3 mm ( 0.0 - 0.1 in )

Fruiting Season

(Southern Hemisphere)

Jan Feb Mar Apr May Jun
Jul Aug Sep Oct Nov Dec

Additional Information

The small flattened glabrous achenes elongated up to 3 mm (1/8 in) long and are grey to dark brown and have no pappus. The seed is viable but the plant is commonly reproduced vegetatively to maintain true to type.

 

Note:

The seeds remain viable in the soil for up to five years and can be stored in a dried place over 10 years.

 

Environment

Well drained, poor- fertile, moist-dry, sandy, clay or loamy soil, pH 5.0-8.0
Pots, tubs, planter boxes and roof gardens
Full sun, open to expose position, drought and frost-cold tolerant
Cold - cool temperate
Susceptible to powdery mildew, aphids, stem rot

Cultural Uses

The Common Yarrow is a hardy perennial that is grown for its flowers and is spreading habit. It is planted in herbaceous borders or is used for mass planting in parks and large gardens. It is also grown as a spill-over above rock walls or as a container plant. It establishes from division in one season and is an excellent flower and foliage contrast plant. It is easy to grow and the flowers are used in a floral arrangements and the plant has herbal uses. It may be invasive forming an extensive network of branch underground rhizomes and naturalises freely to a point where it is regarded as a weed. it has a vigorous growth rate establishing in one season and has a high water requirement (Scale: 3-drops from 3) double tolerant protracted drought. Care should be taken as contact with the foliage may cause skin irritation.

 

Note:

The plant is harvested during summer when in flower and then dried for the use in extracts, lotions and tinctures.

 

Botanical Medicine Section

The information below is technical and useful for medical herbalist, students studying herbal medicine, pharmacists, doctors, ethno-botanists, plant researchers and related professionals. This information is not to be used as medical advice for self treatment.  If you have a medical problem you should consult a qualified practitioner. This information was compiled by George Stylian, DBM, ND.

 

Parts used

The whole plant collected in the wild state during summer.

Key Constituents (These are the chemical constituents of the plant that give it its medical properties.)

Flavonoids, Alkaloids (achilleine), Triterpenes, Salicylic acid, Coumarins, Tannins, Volatile oils (linalool, camphor, sabinene, chamazulene), Sesquiterpene lactones (11,13-dehydrodeacetylmatricarin, rupicolin A and rupicolin B), Potassium, Magnesium, Calcium, Phosphorus, Vitamin C, Niacinin.

Actions (These are the medical properties of the plant.)

Aromatic and bitter (relieves indigestion), Astringent, Antipyretic (increases perspiration), Hypotensive, Diuretic and urinary antiseptic, Stops internal bleeding (It was used during the siege if Troy to help arrest haemorrhaging of soldiers wounds), Promotes menstruation, Anti-inflammatory (reduces inflammation).

Indication and uses (Medical uses of the plant.)

Yarrow is used for the common cold and fevers. It is also useful for essential hypertension, amenorrhoea, dysentery and diarrhoea. Yarrow helps regulate the menstrual cycle reduces heavy bleeding and eases menstrual pain.

Magnesium, calcium and phosphorus function together in bone formation, muscle contraction, and nerve transmission. The high content of these minerals in yarrow makes it a useful candidate for muscle spasms, depression, hypertension, muscle weakness, convulsions, confusion, personality changes, nausea, lack of coordination and gastrointestinal disorders.

Specific indications

Long term use as a prophylaxis in thrombotic conditions associated with hypertension as in coronary and cerebral thrombosis.

Research (The scientific studies on the plant.)

Three new antitumor sesquiterpenoids, achimillic acids A, B and C, were isolated as methyl esters from Achillea millefolium were found to be active against mouse P-388 leukemia cells in vivo. (, et al. 1994).

Rupicolin B and 11, 13

dehydrodeacetylmatricarin was found to have anti-inflammatory activity. (K, et al. 1991).

A herbal formulation of which yarrow was one of the active ingredients was reported as a treatment for chronic hyposecretory gastritis, chronic hepatocholecystitis and angiocholitis.

Contra-indications and Caution

No contra-indication for the plant (safe) but caution should be used in pregnancy as high doses of the tea may act as an emmenagogue, ie bring on the menses resulting in a possible miscarriage.

Preparations and dosage

Dried herb 2 - 4 grams as a tea. Infuse dried herb in a hot cup of water for 10 minutes. Drink warm in fevers, cold and flues and in urinary and inflammatory conditions.  

Liquid extract: 1:1 in 25% alcohol 2 - 4 mL three time per day (tds)

Tincture: 1:5 in 45% alcohol 2 - 4 mL tds

28 g (1 oz) of the dry plant can be made into a tea (infusion) adding to ½ L (1 pt) of boiling water. Allow to settle to 20 minutes and then drink warm to hot. (One glass dosage). Additional herbs may be added to increase perspiration; examples are chilli, cloves, ginger and cinnamon. A cream made from the tincture of the plant can be used for the relief of haemorrhoids. et al. 1989).

References

Tozyo T, et al. (1994). Novel antitumor sesquiterpenoids in Achillea millefolium. Chem Pharm Bull (Tokyo) May;42(5):1096-100.

Zitterl-Eglseer K, Jurenitsch J, Korhammer S, Haslinger E, Sosa S, Della Loggia R, Kubelka W, Franz C, (1991). Planta Med. Oct;57(5):444-6.

Krivenko VV, Potebnia GP, Loiko VV, (1989).Experience in treating digestive organ diseases with medicinal plants. Vrach Delo Mar ;( 3):76-8.

Herbal reference by George Stylian DBM ND

Cultivation

May be lifted and divided every 2 to 4 years to increase vigour
Add organic matter to the soil in spring, mulch in winter keep moist during summer

Propagation

Sow fresh seeds in situ during spring. 

Divide established clumps (rhizome) during spring.

 

Propagation by Seed (General)

Germination

In order for a seed to germinate it must fulfil three conditions.

 

1. The embryo must be alive (a viable seed).

 

2. The seed must have no dormancy-inducing physiological, physical or chemical barrier to germination; also the seed must be nondormant.

 

3. The seed must have the appropriate environmental requirements, water, temperature and oxygen.

The interaction between these requirements and dormancy is complex and may lead to different environmental requirements that avoid the dormancy of a seed.

 

Sowing Seeds in Containers

There are two general methods for germinating seeds.

Sow seeds in a flat or germinating bed, through which seedlings are pricked-out then, transplanted into another flat with wider spacing or directly to an individual pot.

 

2. Sowing seeds by placing them in to flats with the appropriate spacing or into individual pots.

This method is normally carried out with medium to large seeds such as woody plants and plants that are difficult to transplant.  

Seedling production normally occurs in a greenhouse / glasshouse, cold frames and on hot beds.

 

Method of Seed Sowing

Fine seed is sown in pots or flats that are no deeper than 70 to 80 mm. using a sterilised well-drained media (soil). Fill the container to 20 mm from the top and sprinkle sieved peat to 3 mm depth.

Press the media down level and firm with a piece of timber and then thoroughly moisten.

 

Mix the fine seed with washed sand and then sow thinly on the surface. These may be lightly covered with sand.

Larger seeds may be covered with media or a hole is dibbled and the seed is placed in the media.

 

Watering Methods

For watering you may either mist the containers from above or place the container in tepid water and allow the water to raise through the pot to the surface of the media, then drain away and do not fill to the top of the container.

 

Place a piece of glass over the pot and store in a protected warm environment (glasshouse).

Seeds germinate best in darkness so shade the containers if in direct sunlight.

 

After the seedlings have sprouted remove the glass and ease the seedlings into direct light.

When the seedlings are large enough prick them out and transplant into larger containers then place them in a shade house to harden off.

 

Many seeds have different methods of seed preparation for germination such as nicking or cutting the seed coat to allow water penetration, also placing seeds in hot water and allowing it to cool off.

This is particularly important as it is softening the seed coat.

 

Natural layering

 

Runners

These are stems that grow horizontal from the mother plant and form new plants from a node that form its own root system. When these daughter plants root up in the soil they are dug up and planted as a new plant.

 

Stolons

These are modified stems that grow horizontal to the ground or under the ground with nodes that can produce new plants as in a potato tuber. These can be cut away from the mother plant and form a new plant.

 

Offsets

This is a lateral shoot that forms from at the base of the mother plant. Often referred to in bulbs as bulblets or lateral branching in monocotyledons and appear as thickened stems and are removed close to the main stem. These natural methods are slow but microporpagation in aseptic culture has greatly enhanced production.

 

Suckers

The true meaning of a sucker is a shoot that comes from an adventitious bud on the roots, but generally it is referred to any shoots that arise from the crown of the plant. A sucker may be also seen as any shoot on a rootstock that is below the grafted section.

The method of removal is to dig out and cut it away from the mother plant with some roots attached to its base. It is then treated as a cutting, potted up and kept moist. This operation is normally carried out during the dormant period of the plant.

 

Crown Division

The crown is the part of the plant at the surface of the soil where new shoots arise. With lateral shoots the crown of some plants requires division when they become crowded.

Herbaceous perennials and multi-branched woody shrubs may develop large crowns that need dividing.

It is a simple method of propagation that is used by amateurs and professionals for a small increase in plants.

Plants that flower during spring to summer are divided during autumn and if flowering in summer to autumn they are divided in spring. The crown is dug up then cut with a knife in to sections, which has a shoot and abundant roots then planted or potted up. The crown may also be divided in some species by using a shovel to cut and dig sections out.

Pests

29
Aphids
Various Aphid Species
Hemiptera
Aphididae

PEST

   NAME

     Aphids

     Various Aphid Species

   ORDER

     Hemiptera

   FAMILY

     Aphididae

Description of the Pest

The common name varies and aphids may be referred to as black fly, greenfly, ant cows or plant lice.

These small insects have soft globular body that is from 1mm to 8mm long and vary in colour from green, yellow, black and pink, with the winged forms being elongated. Both adult and nymphs, have piercing and sucking mouthparts.

Aphids are found on buds, flowers, or leaves and stems, preferring soft new growth. On older leaves the aphids are found in protected positions, such as under the leaf. Certain species of aphids form galls as they suck sap and may be found on the roots of the plant. (E.g. Woolly aphids and Black peach aphids)

Most aphids possess a pair of characteristic tubular projections, known as cornicles; these secrete a pheromone and a waxy fluid, which is thought to protect them from some of their predacious enemies.

White exoskeletons, honey dew and sooty mould indicate the presence of Aphids


Balsam Twig Aphid (Mindarus abietinus) is greenish and covered in a white wax and is normally found on the young shoots of conifers bending and killing the needles. It is found on Abies and Picea species.


Aphid and their exoskeletons    on underside of a leaf


Black Citrus Aphid (Toxoptera aurantii) has a soft plump green body and the black coloured adults may or may not be winged. They feed in groups, curling leaves and producing honeydew attracting sooty mould.


Green Peach Aphid (Myzus persicae) is a soft plump green insect up to 0.2mm long and may be wingless. The nymphs are yellowish green and are responsible for spreading viruses in Dianthus species.


Spruce Gall Aphid (Chermes abietis) form cone shaped galls up to 12mm long resulting from the feeding. The wingless female adult lays eggs on the stems and the immature females overwinter on bud scales. Large infestation will weaken trees such as Picea abies and Pseudotsuga menziesii.


Tulip Bulb Aphid (Anuraphis tulipae) is small, waxy grey coloured and infests the underside of the bulb scales or rhizomes. They occur in the ground or on above ground parts and during storage.


Life Cycle

These insects have a Hemimetabolous life cycle, i.e. The nymphs resemble the adults.

During spring all eggs produced hatch as female nymphs. Adult Aphids are capable reproducing without fertilisation.  The males are only produced in some species as the weather cools down, and the day length shortens.


Aphids are capable of giving birth to living young and large populations build up quickly during summer. Over crowding causes the aphids to become smaller, less fertile and produce more winged forms that can migrate to other host plants.

There are many different types of aphids and the life cycle varies from warm to cold climates.


Typical life cycles

Distribution of the Pest

World wide


Period of Activity

In warm climates they are seen throughout the year, but aphids dislike hot dry or cold conditions and heavy rain will decrease the population. In cold areas aphid eggs are laid around a bud base or other protected areas of the plant during autumn and emerge as nymphs during spring, feeding on the new growth.

Numbers build up quickly in the warmer months of the year. Some species feed during winter on Sow thistles.


Susceptible Plants

There is a wide range of plants attacked, from roses to vegetables, shrubs and trees. Certain aphids attack a specific genus while others have a wide range of host plants. Many are capable of transmitting plant virus diseases.


Adults and nymphs feeding    A colony of aphids


Acer species are attacked by several aphids including the Norway Maple Aphid (Periphyllus lyropictus) which is a greenish with brown markings and secret honeydew, preferring Acer platanoides. Other aphids include (Drepanaphis acerifolia) and (Periphyllus aceris) which are commonly found on the underside of leaves.


Acer species are also attacked by the Woolly Maple Aphid (Phenacoccus acericola) which covers the undersides of the leaves with a cotton-like mass


Alnus species are infested with the Alder Blight Aphid (Prociphilus tessellates) which is blue-black adult that forms woolly masses on the down-turned leaves. The nymphs overwinter in bark crevices.


Aquilegia species are attacked by several aphids including (Pergandeidia trirhoda) which is a small, flat cream coloured insect that is found on young branches and the underside of leaves.


Betula species may be attacked by the European Birch Aphid (Euceraphis betulae) which is small and yellowish or the Common Birch Aphid (Calaphis betulaecolens) which is large and green producing ample honeydew for sooty mold to grow on.


Callistephus species may be attacked by the Corn Root Aphid (Anuraphis maidi-radicis) causing the plant to become stunted, the leaves wilt and turn yellow. The aphids feed on the roots producing honeydew and are dispersed to other host by ants. It is also attacked by the Potato Aphid (Macrosiphum solanifolii).

Carya species are attacked by Gall Aphids (Phylloxera caryaecaulis) which is found on the leaves, twigs and stems forming galls and turning them black.


Chaenomeles and Gladiolus species, new growth and leaves become infested with the aphid (Aphis Gossypii)


Cupressus macrocarpa may become infested with the Cypress Aphid (Siphonartrophia cupressi).


Cyclamen species are attacked by the aphid (Myzus circumflexus) and (Aphis gossypii) which can infest healthy plants.

Dendranthema, Dianthus  and Crocus species are attacked by several types of aphid including the Green Peach Aphid (Myzus persicae) and the Chrysanthemum Aphid (Macrosiphoniella sanborni).


Hibiscus species are attacked by the aphids (Aphis craccivora)  and (Aphis gossypii), both congregate towards the branch tips and may cause leaf curl. Normally only seen in sub-tropical climates.


Aphids on a stem    Mandevilla species


Larix species is attacked by the Woolly Larch Aphid (Adelges strobilobius). The winged adults deposit eggs at the base of the needles during spring and white woolly areas appear attached to the needles where the adult aphids feed. The young aphids overwinter in the crevices of the bark.


Mandevilla species is attacked by aphids that congregate towards the branch tips and may cause leaf curl.


Pinus species is attacked by several species of aphid including Pine Bark Aphid (Pineus strobi), Pine leaf Aphid (Pineus pinifoliae) and the White Pine Aphid (Cinara strobi).


Primula species are attacked by four species of aphid including foxglove, and green peach aphid.


Rudbeckia, Delphinium, Chrysanthemum and Helianthus species are attacked by a bright red aphid (Macrosiphum rudbeckiae).


Sorbus aucuparia is affected by the Rosy Apple and Woolly Apple aphid which attacked the foliage and young shoots.

Spiraea species are attacked by the Aphid (Aphis spiraecola) which feeds on the young shoots and flowers.


Tropaeolum species are attacked by the Black Bean Aphid (Aphis fabae), which is found in large numbers on the underside of the leaves, turning them yellow and causing them to wilt then die.


Tulipa, Iris, Freesia, Gladiolus and Zephyranthes species are infested with the Tulip Bulb Aphid.


Ulmus species are infected by two types the Woolly Apple Aphid (Eriosoma lanigerum), which curls and kills young terminal leaves and the Elm Leaf-Curl Aphid (Eriosoma ulmi) which occasionally attacks the trees.


Viburnum species are attacked by the Snowball Aphid (Anuraphis viburnicola). This aphid congregates at the end of the branches causing the leaves to curl and become deformed under which they hide.


Aphids on Quercus robur


Damage Caused

Buds that have been attacked may not open, leaves and twigs become twisted or distorted and wilt. The aphids also produce honeydew, which is sticky and attracts sooty mould (fungus). This fungus forms a thick layer over the leaf, fruit or stems reducing the plants photosynthesis capability. The sooty mould spoils the plants appearance and its fruit, as does the insects white exoskeletons.


Control


Cultural Control

Aphids may be removed from a plant by hosing them off with water (limited success) or applying soapy water to aphids.. Another organic sprays can be efficient in controlling aphids. Aphids  may also be removed physically by hand for small colonies on spine less plants. Species that live under ground are difficult to control but cultivation of the surrounding soil may help in controlling the infestation. (limited mainly to annual or commercial crops)

Reflective mulch around the plants also reduces numbers by repelling the insect this material is available commercially. (Reflective mulches are mainly used in market gardens for avoiding the Green peach Aphids) Resistant rootstocks are available to avoid some root feeding aphid of commercial plants, e.g. Vines and fruit trees


Biological control

Aphids are attacked by several insects includes parasitic wasps or predators such as ladybirds/ lady beetles, hover flies, lacewings, spiders.


   Parasitised aphids


Chemical Control

Aphids may be controlled by spraying with a contact or systemic insecticide. The type of application used will depend on the plant is being attacked.

Aphids can be suffocated and therefore controlled with the use of e.g. White oil, Pest oil, Soapy water from soap such as Lux Flakes ®

Note

It is your responsibility by law to read & follow the directions on the label of any pesticide


Monitoring

Aphid are attracted by yellow colour and traps such as boards painted yellow and covered in glue or sticky substance will attract and trap the insects.  There is also a commercially sticky yellow tape that can be attached to susceptible plants

Amendments by B. Sonsie Dip Hort Sc Burnley


Diseases

52
Powdery Mildew
Various Powdery Mildew Species

DISEASE

   NAME

     Powdery Mildew

     Various Powdery Mildew Species


Description

Powdery mildew covers arrange of fungal infections most with simular characteristics of white powdery areas appearing on the leaves and flowers.


     White powdery area     



Symptoms

Powdery mildew (Oidium species) affects the following five plant groups with slightly different characteristics.


Cucurbits firstly form white spots on the underside of the leaves. Under optimum conditions the fungus spreads to the upper surface covering the entire leaf causing it to die. It may also extend to the stems slowing the growth of the plant and may reduce the size of the fruit.



Grape leaves, flowers and fruit are attacked with the appearance of greyish-white powdery spots. Infected flowers set poor quality fruit and infected fruit splits open and dries out.


Pawpaw leaves become infected on the underside at first then spreading covering the entire leaf. The fruit forms irregular light grey spotted areas that damages the surface and under the surface causing the fruit to misshapen and reducing its market value.


Rose leaf and buds are covered in a fine white powdery coating and in severe cases it extends to the stems. When young leaves are infected they become distorted and older leaves develop blackened areas. Infected flower buds may fail to open and opened blooms may be discoloured or distorted.


Strawberries show different signs of infection with the leaf margins first rolling upwards then developing purplish irregular blotches along the veins.  The infected flowers may fail to set fruit and if fruit is produced it is small, hard fails to ripen. Semi mature fruit that is infected has dull appearance and may form cracks or split open.


The Powdery Mildew (Sphaerotheca lanestris) infects leaves and twigs. The under side if the leaf firstly has a white mealy growth that matures to felt-like brown mycelium that can cover the entire leaf, and the twig tips. It is only one of the many types that infect Quercus species.


Source and Dispersal

The spores overwinter in fallen leaves, dormant buds, seed and infested plants. It is dispersed by wind.

Favoured Conditions

Generally it prefers warm humid conditions, but failing to germinate when it is raining. The fungus that attacks Pawpaw prefers cooler conditions disappearing in the warmer months.        


Affected Plants

There are many plant species ornamental trees and shrubs that are attacked by Oidium species including; Roses, African Violets, Cucurbits, Grapes, Pawpaw, Strawberries, Hydrangeas, Ajugas, Antirrhinum, Oaks and Photinias.


Acer species are infected by the powdery mildews (Uncinula circinata) and (Phyllactinia corylea) but are not normally serious.


Aesculus species are infected by the powdery mildew (Uncinula flexuosa) which forms a white mold on the underside of the leaves.


Arenaria,Cuphea, Erica and Eschscholtzia species are infected by the powdery mildew (Erysiphe polygoni). This fungus is greyish or white and covers leaves or young shoots. Heavenly infected leaves turn brown and fall from the plant. The plant eventually dies.


Aster species are infected with the powdery mildew (Erysiphe cichoracearum) which is more prevalent on the lower part of the plant.


Ceanothus, Corylus, Platanus, Syringa and Weigela species are infected by the powdery mildew (Microsphaera alni) particularly London Plane. The mycelium forms a felt-like cover on the leaves.


Celtis species are susceptible to the powdery mildew (Uncinula parvula) and (Uncinula polychaete). This fungal problem can affect either side of the leaf, which can have spots or be completely coved in mildew. The fruiting bodies appear on the opposite side of the mildew.


Cornus species leaves are infected by the powdery mildew (Microsphaera alni) and (Phyllactinia corylea), covering the leaves in a whitish fungus.


Dahlia species are infected by the powdery mildew (Erysiphe cichoracearum) that forms white powdery areas on the leaf surface.


Lagerstroemia species are infected by the powdery mildew (Uncinula Australiana) that forms white powdery growth on the leaves and may also distort the infected foliage.


Populus and Salix species are infected by a white powdery mildew (Uncinula salicis) that produces black fruiting bodies with a curled tip, but is not normally a major problem.


                  Quercus robur


Quercus species are susceptible to several powdery mildew fungi including (Sphaerotheca lanestris), (Erysiph trina) and (Phyllactinia corylea). Generally white mealy growth appears on the leaves, normally on the underside turning the infected areas brown and then the leaf dies. The infection may spread to the twig tips causing dieback. Control may be difficult and unwarranted on large trees but nursery stock may be sprayed with a fungicide during susceptible periods.  


Rosa species are also infected by the powdery mildew (Sphaerotheca pannosa).

Rudbeckia and Senecio species are covered in white fungus (Erysiphe cichoracearum) which infects leaves, flowers and stems. This results in the plant becoming stunted.


Senecio species are infected by the powdery mildew (Sphaerotheca fuliginea) which forms circular white powdery areas on the leaves.


Spiraea species are infected by the Powdery Mildew (Microsphaera alni) and (Podosphaera oxyacanthae).


Ulmus and Rhododendron (Azalea) species are also infected by (Microsphaera alni). Circular patches of white powdery growth appear on the leaves.


Veronica species are sometimes infected by the powdery mildew (Sphaerotheca humili) causing a white coating to appear on the leaves. Not normally a major problem.


                 


Zinnia elegans are commonly infected by the powdery mildew (Erysiphe cichororacearum), which appears on both sides of the leaves as a greyish powdery cover and may be transmitted by seed.


Non-chemical Control

Choose less susceptible species and when planting space the plants to allow good air circulation. Avoid overwatering and try to keep the foliage dry. Affected plants may be dusted with powdered sulphur or sprayed with a milk mixture to discourage mildew. Vegetables that are infected with mildew should be removed and replaced with new young plants, as they are more resistant to infection.


Chemical Control

Prenatitive spraying during warm humid conditions using a suitable fungicide such as wettable sulphur, bitertanol, carbendazim, fenarimol and triforine helps control the problem.

Note

Always read the label for registration details and direction of use prior to application of any chemicals.


76
Fungi (General)
Various Fungal species

DISEASE

   NAME

     Fungi (General)

     Various Fungal species


Description

A fungus is a plant that lacks chlorophyll and conductive tissue. Generally they are made up of branched threads called 'hyphae' and collectively form a vegetative body called 'mycelium'. The fungus is small but the fruiting bodies can become very large up to 600mm across such as bracket fungi or mushrooms. Common fungi are mould and mildews. problem that attacks the roots causing them to rot.

Fungus can reproduce many ways but primarily it is asexually, simular to cuttings of a plant and often occurs with minute portions of the mycelium (spores) separating. The spores can be arranged in a structure such as a sporangia or pycnidia or develop without an enclosed structure called a "conidia". Either way the fungus propagates very rapidly.  Sexually reproduction occurs when two nuclei unite and form sexual fruiting bodies (zygospore).


Strelitzia reginae flower


Symptoms

Fungus attacks all the above or below ground level parts of the plant living within the tissue of the plant and are very small and not normally detected until the fruiting body appears. However parasitic types such as powdery mildew or rust are visible on the outer surface of the plant.

Fungi hyphae may be divided by cross walls and known as "septate" while others with no cross walls are known as "nonseptate". These are the fungi responsible for cell leakage as in rot.


Back Mold (Chalariopsis thielavioides) affects understocks of grafted Rosa species by inhibiting the development of callus. It is whitish-grey maturing to black and can be found in the pith of the rose stem.


Black Root Rot (Chalara elegans).This recently introduced fungal disease in Australia (1993) affect plants by blackening the root systems and turning leaves yellow or purple. It is difficult to identify specifically as other pathogenic root diseases and nutritional deficiencies have simular characteristics.  

The asexual spores are dispersed by wind or water. It is also transmitted on insects and in contaminated growing media or plants preferring humid moist conditions.

This fungus affects a wide range of ornamental plants including; annuals, perennials and shrubs. Examples are Begonia, Boronia, Camellia, Cyclamen, Fuchsia, Gerbera, Grevillea, Impatiens, Pansy, Petunia, Rosa species and Snapdragon.


Black Stem Rot (Pythium splendens) normally is a rot that occurs in cuttings turning the stem progressively black and shrunken. The leaves fall and the plant becomes stunted, eventually dieing.


Bleeding Necrosis (Botyosphaeria ribis) attacks and kills the inner wood causing the bark to split open and bleed sap giving it an oily appearance.


Blight (Endothia parasitica) is a serious pest of Castanea species, entering the twigs and small branches, and then progressively travelling throughout the tree killing it. It may form cankers on the base of the trunk or in the dead branches above with the amber coloured fruiting bodies pushing there way through the bark.


Copper Web ((Rhizoctonia crocorum). This fungal disease appears in defined patches causing the corms in the centre to become a black powdery mass. Corms on the outer ring of the patch that are partially infected forming a felty mass of violet threads on the corm scales. These threads extend into the soil and large sclerotia forms in the soil and on the corms. Healthy corms become infected from contaminated soil that contains mycelium and sclerotia.


Dry Rot (Phyllosticta concave) forms small circular spots that increase to a diameter of 30mm, and then becomes sunken as the cells collapse. The infected area develops minute black fruiting bodies.


Dutch Elm Disease (Ceratocystis ulmi) is a serious fungal problem of Ulmus species that initially causes yellowing then wilting of the leaves that turn brown and die. This may be seen on certain branches of the tree and on inspection under the bark the sapwood reveals brown streaks. A cross section of the affected branch displays round spots that are dark brown. This infection normally spreads quickly throughout, killing the tree in one to two seasons.


Dieback in Camellia (Glomerella cingulate) is a pathogenic fungus that infecting existing wounds such as leaf scars or mechanical damage, forming a sunken area (canker) that spreads around the stem causing die back. The affected plant has new shoots that are brown-black and the tips curl, forming a 'Shepard's Crook' appearance. The leaves also die but are persistent on the plant and the spores are found in soil or on other infected plants.


Curvularia Leaf Spot (Curvularia species) in Turf Grass. This is normally a secondary weak fungal infection that forms spots on the leaves that lengthens turning the leaves greyish. The leaf shrivels then dies and infected areas appear as weak patches in the turf. Preventive measures include minimising leaf wetness and excessive use of nitrogen fertiliser.


Fairy Rings Blue Couch     


Fairy Rings are a fungal problem in Turf Grass and is caused by several species including (Lycoperdon species), (Marasmius species) and (Tricholoma species). Rings appear in the turf as fruiting bodies or dead grass and as lush green foliage. The mycelia expand radially in the turf feeding on soil nutrients and organic matter with water present.


Under severs conditions the mycelia consume all available nutrients resulting in the death of the turf. Lush turf can result from a less developed infection, where the decomposing hyphal releases nitrogen. This available nitrogen may be beneficial to the turf but some forms of nitrogen are detrimental.


Leaf Blister (Taphrina coerulescens) appears as yellowish circular raised areas on the upper side and depressions on the underside of leaves, up to 15mm across. As the fungus spreads the leaf dies but remains attached to the tree and this infection is commonly found on Quercus species..


Leaf Blotch (Guignardia aesculi) forms small or large water soaked spots that are reddish with a bright yellow margin and form black fruiting bodies in the centre. The affected leaf and petiole have a scorched appearance before falling, found on Aesculus species


Grevillea robusta     Leaf Scorch


Leaf Scorch (Verrucispora proteacearum) is a fungal disease that infects leaves causing large parts of the leaf to turn grey-brown, giving the appearance that it has been singed by fire. Black fruiting bodies appear on the affected areas and the leaf soon withers then dies. New, mature leaves are affected during very wet periods towards the end of the branches and Grevillea and Hakea species are susceptible.


Melting Out (Helminthosporium vegans) forms bluish black spots with straw coloured centres on the leaves and may be found on the sheath, encircling it causing Foot Rot. It infects grasses particularly Poa pratensis. There is another fungus that is simular Helminthosporium Blight (Helminthosporium dictyoides) that infects Poa, Festuca and Agrostis species.


Pad decay (Aspergilus alliaceus) infects Cereus and Opuntia species and occurs at during periods of high temperature.  The yellow spores at the epidermal layer through wounds and germinate on mass causing the area to become soft and spongy. An anthracnose called Shot Hole is a similar forming brownish spots the turn grey, and then black destroying pads. Control methods include physically removing damaged pads and allowing the Sun to heal wounds.


Potato Gangrene (Phoma foveate) is a soil borne fungus that infects the roots during harvest primarly through wounds and develops during storage. The potatoes rot from the inside forming rounded depressions on the surface and have a strong odour of rotten fish.


Root Rot Fungi (Phymatotrichum omnivorum) and (Pellicularia filamentosa) cause the roots to rot and the plant suddenly wilts then dies.


Root Rot (Pythium debaryanum) forms water soaked dark brown streaks that affect all parts of the plant causing wilting then dieing. It infects Ranunculus species, it also infects cactus species by forming brown spotting and wilting that appears at the base of the plant then extends towards the top. It quickly spreads from plant to plant in collections and is controlled by avoiding over watering, excessive humidity and are using a sterilised soil when potting up.

This fungus also is responsible for damping off of seedlings in a glasshouse environment.


Spring Dead Spot     


Spring Dead Spot (Leptosphaeri species) is a fungal disease that infects Couch Grass. It first appears during autumn as pale bleaches areas up to 500mm (20in) wide and persists throughout winter. In spring the affected areas do not recover or recover slowly and on inspection the roots or rhizomes are rotted. Runners from the surrounding healthy turf will help with recovery and all signs of the problem disappear by mid summer.


Cactus species      Pachypodium species


Stem Rot (Helminthosporium cactivorum) forms well defined yellow lesions that mature into soft dark brown rot. It commonly infects Cactus species entering through the stomates or wounds. Heavily infected plants collapse and die.


Stem Rot or Basal Rot (Pellicularia rolfsii) is a soil borne fungus that infects the stem root junction and extends into the leaves. In orchids the leaves become discoloured, dry and detach from the base which is covered in a fungal growth that produces sclerotia. The sclerotia is whitish to yellow then becoming dark brown and can be viable for up to four years.


White Mold  (Ramularia desta f. odorati) occurs on both sides of the leaf and looks simular to powdery mildew but forms faint dull, reddish brown elongated spots on the leaf that may be depressed or along the margin where they have a watery appearance. Tufts of hyphae develop in the stomates.


Wilt (Ceratocystis fagacearum) causes leaves to curl then turn brown and the sap wood may also turn brown or black. Heavy infection may kill a tree within two seasons and is found on Quercus species and other ornamental trees.


Witches Broom may be a fungal problem that causes a proliferation of small axillary shoots to appear at the end of the branches. Little is known about this problem, though it affects a wide range of plants including Eucalyptus, Leptospermum and Pinus species.


Source and Dispersal

Fungus is found in the soil or on other infected plants and after releasing the spores, they are dispersed by wind or are transmitted in infected stock, insects and with splashing water.


Wilt is transmitted by infected root stocks, several species of insect and contaminated tools.


Dutch Elm Disease is transmitted by bark beetles such as (Scolytus multistriatus) and (Hylurgopinus rufipes). These beetles deposit eggs in the sapwood where the lava tunnel and pupate. The emerging beetles tunnel the bark and carry the fungus to fresh feeding sites on the tree. Infected beetles may also be transported to fresh sites in waist material.


Favoured Conditions

Prefers cool moist conditions with temperatures from 10º to 25ºC and is more common from autumn to spring when it is wet.    

        

Affected Plants

A wide range of plants and all parts can be infected by various fungal diseases. Bleeding Necrosis is found in Liquidambar species and Stem Rot or Dry Rot infects Cactus species such as Opuntia and Pelargonium.


Abies species are infected by several fungi that cause Leaf Cast which turn the needles yellow to brown then fall prematurely.


Abutilon species are infected by the Stem Rot (Macrophomina phaseolin) affecting the lower stems and is not commonly seen.


Achillea, Cuphea, Leucanthemum, Euphorbia species are infected by the Stem Rot (Pellicularia filamentosa) which enters through the roots and rots the base of the stem.


Alternanthera species are infected by the Leaf Blight (Phyllosticta amaranthi) which forms small brown spots on the leaves causing them to curl and die.


Aloe, Astrophytum, Copiapoa, Echinocactus, Espostoa, Ferocactus, Gymnocalycium, Kalanchoe and Schlumbergerera species are infected by Bipolaris Stem Rot (Bipolaris cactivora). This infection affects many cacti species causing rot in the stems with a blackish appearance.


Amelanchler is affected by the Witches Broom (Apiosporina collinsii).


Antirrhinum species are infected by the Blight (Phyllosticta antirrhini) that forms light brown spots on the upper-side of the leaf and on the stem. As the spots enlarge they turn greyish with black fruiting bodies in the centre, then become brown and killing the affected areas.


Begonia species are infected by the Stem Rot (Pythium ultimum) turning stems black then becoming soft and causing the plant to collapse. This is the same fungus that causes Damping-off.


Betula species are affected by the Leaf Blister (Taphrina bacteriosperma) which curls the leaves and forms reddish blisters.


Chamaedorea and other cain-like species are infected with Gliocladium Stem Rot (Gliocladium vermoseni) which forms a dark basil stem rot generally on damaged plants and produces orange-pink spores.  The mature leaves are first affected and eventually the stems or cains rot and die.


Crocus and Gladiolus species are infected by the Dry Rot (Stromatinia gladioli), which causes lesions on the corms and rots the leaf sheath.


Crocus, Iris, Tulipa, and Narcissus species are infected Copper Web ((Rhizoctonia crocorum).


Dianthus species are infected by Phialophora Wilt (Phialophora cinerescens) that causes the leaves to fade and plants to wilt. There is obvious vascular discoloration which is very dark. It is not found in Australia.


Erythrina x sykesii may be infected by the Root Rot Fungi (Phymatotrichum omnivorum).


Fern species are infected by Tip Blight (Phyllosticta pteridis). This blight produces ash-grey spots with purple brown margins and the fruiting bodies appear as black pimple like spots.  It is transmitted by air or moisture and in infected fronds become brown and die.  Control methods include sprang fungicide on leaves or reducing humidity and avoid wetting the fronds.


Forsythia species are infected by Stem Gall (Phomopsis species). It forms rounded growths along the stems causing them to die and look unsightly.


Gladiolus species are infected by Penicillium Rot of Corms (Penicillium gladioli). This disease forms deeply sunken reddish brown areas that become corky and produce a greenish fungal growth.


Hedera species are susceptible to several Fungal Leaf Spots including (Glomerella cingulate), (Phyllosticta concentrica) and (Ramularia hedericola). All of which cause yellowish spots that develop into dry brown blotches that kill the leaf.


Larix species are susceptible to Leaf Cast (Hypodermella laricis). This fungus attacks the needles and spur shoots turning them yellow at first then brown after which small black fruiting bodies appear on the leaves during winter.

There are several other fungi including (Cladosporium species) and (Lophodermium laricis) cause leaf blight or leaf casts.


Orchids such as Cattleya, Cymbidium, Cypripedium, Dendrobium, Epidendrum, Oncidium, Paphiopedilum, Phalaenopsis and Zygopetalum species are infected by Phomopsis Rot (Phomopsis species). This fungal problem forms a firm brown rot that appears on the leaves, pseudobulbs and rhizomes. The affected areas have yellow margins and the centre is covered in tiny black specks (fruiting bodies). Cattleya species are particularly susceptible. These plants are also infected by Psudobulb Rot (Mycolleptodiscus coloratus implicated). Dark spots appear on the pseudobulbs eventually causing extensive rot and killing the bulb.


Palms are infected by the fungus Butt Rot (Ganoderma sulcatum). The fungus entered the lower trunk normally as a result of mechanical damage (lawn mower). Symptoms include stunting of new growth and yellowing of the lower leaves. Fruiting bodies become evident at the base of the trunk. There is no effective control method and replanting in infected soil should be avoided.



Kikuyu Yellows     


Pennisetum clandestinum (Kikuyu) is susceptible to Kikuyu Yellows (Verrucalvus flavofaciens), thisis a water mould that infects the roots and causes them to rot. The infection extends up the stem and onto the leaves with yellow discolouration and can be limited to a small or large area up to 1m (3ft) wide.

It is found in warm temperate to sub tropical regions and dispersed in infected soil or plant material. There is no chemical control, nitrogen fertiliser masks the symptoms and complete fertiliser encourages stronger roots to fight the disease.


Pittosporum, Antirrhinum, Aquilegia, Echinops and Orchid species are infected by the Stem Rot or Basal Rot (Pellicularia rolfsii) commonly in the northern hemisphere and preferring humid glasshouse conditions.


Solidago species are infected by the fungal Scab (Elsinoe solidaginis) which covers the leaves and stunts the growth of the plant. Young plants may be killed.


Trillium species are infected by the stem rot (Pellicularia rolfsii) and ( Ciborinia trillii). This normally occurs in wet soils and is detrimental to the plants life.


Tsuga species are infected by Sapwood Rot or Butt Rot (Ganoderma lucidum) and (Coniophora puteana), which attacks the sapwood close to the bark, towards the base of the tree. Commonly killing the host.


Tulipa species are affected Blue Mold (Penicillium species) and the fungus (Rhizopus stolonifer) causing rot in the bulbs.


Vinca species are infected by the soil born Root Rot (Pellicularia filamentosa) which rots the stems and roots.


Viola species may be infected with the Scab (Sphaceloma violae) which attacks all parts of the plant including the seed capsule forming yellowish spots that turn brown and in leaves fall out. Stems and petioles can be girdled killing the upper part.

Viola species are also infected with the Stem Rot (Myrothecium roridum) which attacks the stems at ground level causing them to become dry and brittle. The leaves show symptoms by turning purplish-black and this fungus also infects Alcea and Antirrhinum species.


Non-chemical Control

Generally remove and destroy any infected plants or plant parts, when replanting, avoid using susceptible species for 3 years.  When growing crops space the plants to reduce the humidity and airflow and cultivate the soil to increase the drainage.  Remove weed growth from around the susceptible plants.

Avoid over watering the surrounding soil which encourages fungal development. In the case of trees remove any infected branches and heavily infected trees should be cut down and removed. This infected material should be disposed or burnt. Damaged trees should have the wounds dressed and sealed as a preventative measure particularly for Dieback in Camellia.


Deter Potato Gangrene by planting clean stock and be careful not to damage the crop when weeding. When harvesting the tubers choose a dryer period and be careful not to damage them.


     Fairy Rings


Fairy Rings in Turf are difficult to control and may appear or disappear sporadically. Cultural practice such as minimal thatch build-up, regular aeration and a reduction of organic matter spread on the turf will reduce infection.


Chemical Control

No suitable fungicides available, though drenching or spraying the soil with the fungicide dichloran helps control soil born fungi.

Note

Always read the label for registration details and direction of use prior to application of any chemicals.


Leaf to 300 mm (12 in) long
Flower head 10 mm(3/8 in) wide
'Moonshine'
Spreading habit

Plant Photo Gallery - Click thumbnails to enlarge

Climate zone

This Plant tolerates zones 3-10

Average Lowest Temperature : -10º C 14º F

USDA : 3, 4, 5, 6, 7, 8, 9, 10

This USDA (United States Department of Agriculture) hardiness zone chart can be used to indicate a plant’s ability to withstand average minimum temperatures. However, other factors such as soil type, pH, and moisture, drainage, humidity and exposure to sun and wind will also have a direct effect on your plant’s survival. Use this chart only as a guide, always keep the other factors in mind when deciding where, when and what to plant.

A plant's individual USDA zone can be found in the Plant Overview.

Region of origin


Europe, Britain, Western Asia

Climate Description

Cool to Cold
These zones have low winter temperatures with moderate humidity and moderate summer temperatures.
Frosts and snow are severe. Droughts rarely occur and wind is cold.

Plant growth

Endemic native and exotic cool climate plants grow well within these zones.

Glossary

Dictionary Growth Habit
Leaf Type Botanic Flower Description
Leaf Shape Flower Inflorescence
Leaf Arrangement Fruit Type
Leaf Margin Bark Type
Leaf Apex And Bases Flower Description